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The static and the dynamic Jahn-Teller vibronic couplings found in square planar mole-
cules are investigated. Without spin-orbit coupling and considering only one distorting vibra-
tion, the problem can be solved exactly within the adiabatic Born-Oppenheimer approxima-
tion. In this case the vibrational pattern is that expected for a harmonic oscillator. If on the
other hand spin-orbit coupling is included the vibrational pattern becomes highly irregular.
Finally, in the limit of large spin-orbit coupling the Jahn-Teller coupling is completely quen-
ched and the potential surfaces are again harmoniec.

Statische und dynamische Jahn-Teller-Verzerrung quadratischer Komplexe wurden
untersucht. Vernachléssigt man Spin-Bahn-Kopplung und betrachtet nur eine verzerrende
Normalkoordinate, so ist das Problem in Born-Oppenheimer-Niherung 16sbar. Das Schwin-
gungsspektrum ist das eines harmonischen Oszillators. Bei Beriicksichtigung der Spin-Bahn-
Kopplung wird es jedoch sehr unregelmiéfig. Im Grenzfall grofler Spin-Bahn-Kopplung
schlieBlich wird die Jahn-Teller-Kopplung véllig unterdriickt; die Potentialflichen sind wieder
harmonisch.

Les distorsions statiques et dynamiques d’aprés Jahn-Teller sont étudiées au cas des
molécules quadratiques. Sans couplage spin-orbite et avec une seule distorsion normale, le
probléme se résout au cadre de I'approximation de Born-Oppenheimer; les vibrations sont
celles d’un oscillateur harmonieux. L’inclusion du couplage spin-orbite conduit & des spectres
trés irréguliers. Finalement, pour les grands couplages spin-orbite, le couplage de Jahn-Teller
est complétement supprimé, et les surfaces d’énergie potentielle sont de nouveauharmonieuses.

Introduction

It might naively be supposed that atoms in polyatomic molecules normally
would tend to seek positions such that the molecule would achieve the greatest
“symmetry”’. However, experience has shown that such vague idealized argu-
ments rarely form a sound basis for structural predictions. Furthermore, many
factors such as crystal packing considerations, anharmonic forces between the
atoms ete. are difficult to visualize in advance, and may destroy all our precon-
ceived ideas.

Quite apart from the above it has been shown by JAEN and TELLER [2] that
on completely general grounds a molecule cannot assume a shape which would
lead to the molecule possessing a degenerate electronic ground state. If, therefore,
in a calculation we start out assuming a geometry which gives rise to degeneracy
in the ground state, and if we want to find the equilibrium conformation of the
molecule, we must consider the couplings of the vibrational and electronic pro-
perties of the molecule. In such a “vibronic” coupling the nuclei are displaced, the
degeneracy is done away with and the molecule moves towards its equilibrium
conformation.

* Presented in part at the Konstanz Summerschool, September 1962.
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In this note we want to investigate the Jahn-Teller coupling in square-planar
molecules. A similar investigation has recently been published by Hougrx [I].
However, our treatment differs somewhat from his, among other things in the
inclusion of the spin-orbit coupling. As to the general theory and treatment of
Jahn-Teller effects we refer to the brilliant research and review papers of LigHR
[3] and LoweuET-Higerns [4].

The Statie Jahn-Teller Problem

We want to investigate the influence of nuclear displacements upon the
degenerate electronic levels of a 5 atom molecule possessing Dy, symmetry. Using
the notation of Wirsox, Drcrus and Cross [4] we find for a square-planar mole-
cule (Fig. 1) the vibrational symmetry coordinates oig, Pig, Bag, au, Bou, 2 &4 In
a Dyy, point group we can have at most
two-fold electronic degeneracy. An B or
By level is thus the only level which can
experience a configurational instability
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Fig. 1 Fig. 2
Fig. 1. Symmetry elements in a square planar molecule

Fig. 2. The Jahn-Teller active 14 and 24 vibrations

of the Jahn-Teller type. Furthermore an £ level may exhibit a first-order spin-
orbit coupling.

The Hamiltonian for the system, including spin-orbit coupling, is to the first
order in the nuclear displacement coordinates

H
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Here 57 is the Hamiltonian for the fixed Dy, nuclear geometry without spin-orbit
coupling included and the expansion in the vibrational symmetry coordinates g;
runs over all the nine normal vibrations.
Let us investigate the behaviour of an 2, state. As our zero order wavefunc-
tions we take elx, €58, ebx and el where e and ¢} together span an e orbital in

i

g
Dy and « and f are the two spin-functions.

Neglecting for the moment the spin-orbit coupling term, which to good approxi-
mation is independent of nuclear displacements, and because ¢; is a function of the
nuclear displacements only, then the “active’ vibrations are found by demanding

. o .
that the matrix elements (e“’b > <?q—> e b) should be different from zero.
T\ 0 Jo

7
The symmetric product of the ¢, wavefunctions transforms as a4, biy and by, and
consequently the 81, and sy vibrations are Jahn-Teller active. These vibrations
will take the molecule to a Dyp symmetry (Fig. 2).
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We now characterize our wavefunctions in Dy, symmetry and get ey (Dyr)—
(bsg + bog) (Dan), P1g (Dan)— x1g (Dop) and foy (Dan)— f1g (Dap). With £®
equal to s — o transforming as augq; + b1gga + A (bag sz + bag sy -+ b1y s2) and
remembering that b, s, is a complex operator, we get the secular equation,

g | —ce g — WO 0 02q2+%i/1 0 ‘

ep 0 —o g — W® 0 Cqa— 312 [*O
o Coo—3 02 0 ¢ q— WO 0 =
ap |0 Gyt hil 0 WO
Here

oH
— ¢ = jeg<%>oeg dr

oH
Gy = J‘ eg (@)0 63 dr

and we have furthermore utilized the following relation derived by a symmetry
operation in Dyp:

and

J € (big) et dr = — [ €} (big) ebdr .

The solutions are

12
Wm=iVﬁﬁ+£@+q
each solution being two fold degenerate (KrRaMER’s degeneracy).

The potential surfaces are now obtained by adding to the above expression
the quasiharmonic potentials § k; ¢ and § k, ¢3 where k, and k, are the force
constants for the harmonic vibrations in ¢; and ¢,. The two potential surfaces are
thus

Thi@t+5kygs £ 2V + 4cqF + 4cE g3
and the original four-fold degenerate potential surface is seen to be split into an

upper (plus sign) and a lower (minus sign) potential surface. The minimum value
of the energy can now be found by minimizing the lowest surface with respect to

¢, and g,.
Apart from ¢} = ¢3 = 0 the following solutions are obtained:
AT
¢ =0 @ =+ V,;—; (1)
0 0 &
% =0 Q=+ Ve~ (2)
Besides the above solutions, we have in the special case where
& o
by ok
a solution set which satisfy
(42)? (2% _ 1
el A2 2 Az )

Boo4d B 4
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Hence
f el 72 2 :
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where ¢ is a cyclic coordinate. This means that, in this last very special situation,
the molecule can ‘“rotate” freely between an “elongated” and a ‘“‘rhombic”
configuration. Specifically we must demand that the square roots appearing in
(1), (2) and (3) have a positive argument. For instance in case (2) we must have

& 7 |21 &
B ad” 2T
if the complex is to be stabilized due to a Jahn-Teller effect.
We find for Wiin:
a 2k
2k 8
or for the Jahn-Teller stabilization energy (Table)
& Rk A

Wmin = -

W =
stab 2k, + 3 Ci 5
Table

Z. ' Wstab 1‘ 1)]’?/'1/1
0 ‘ 500 cm™1 1.000
100 cm™?! ‘ 451 ecm™1 0.999
1000 em—1! 125 cm™1 0.866

2000 e 0cm?

H
i
2

¢

With ﬁ— = 500 em™?, a very reasonable order of ma-
1

gnitude, Wb is given as a function of A.

Notice, that in all our results we have not once used the actual form of the
orbitals, only their angular transformation properties. Hence our results are
completely general.

The Dynamic Jahn-Teller Problem

So far we have treated the vibrational coordinates as parameters that we could
use to minimize the electronic energy. However, for the simultaneous treatment
of the electronic and vibrational properties we have that the Jahn-Teller Hamil-
tonian is

H =AY+ H i (@1) + H g (42) +€h<zﬁ> +92<%> +AL.S.
% /o 9 /o
The ‘“complete” wavefuction is in the “crude adiabatic” approximation [4]
given as

Yr,q) = eg‘x @y (01, 92) + 63/3 @ (01> ) + 620‘ @3 (91, 45) + 63/3 @4 (91> 45) -
We have further that

o
<9‘11 )063:_*016;
oH b b
€, = C €
<391 >0 g v
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(an) e =cy €.
0¢» 2

Operating with ## on ¥ (r, ¢), multiplying with the four electronic wavefunc-
tions and integrating over the electronic and spin coordinates we get the following
coupled equation for ¢, and ¢,

(%vm (¢3) + Hvin (a) — &1 ¢4 C gy +¥il ) (%) W (%)

Cada— 304 Hvib (q1) + v (92) + €3 41/ \@s Ps
and a completely analogous one for g, and ¢,. The “‘diagonal Hamiltonian’ is then
H =Hvip (1) +Hviv (1) T V3 GG+ 33+ 1 2%

First we assume ¢, = A = 0. Then
H = _2ﬁ—; :;1 ;E; aaqz tikd+ihgteq
or closing the square

i 01)2 c'l B
=— =] = kyqd .
o 2u1991+2k1< k) 2k 2m0q og Tl
It follows therefore that the energy is given as
W=Ww} + (g + 3) by 4 (g + 3) By,

T2 k1
All that has happened is evidently that the equilibrium of the harmonic oscillation

in g, has been shifted an amount ;—1 . A transition from a non degenerate state
1

terminating in the Jahn-Teller distorted state will therefore show a vibrational
progression in »,.
Next we consider only ¢, = 0. Expanding the lower potential surface § &, g2 —
——e 2 2
¥ V&g + 2% around the minimum point ¢? = 706_21_ — Zf_z of the potential
1 C2
surface we get to the second order in ¢,

R o? B\ , A Ak 4 a
e v + ik (1—40%>QI 83 T,
e .
ETR 3qz+2k2§l2
and for the vibrational levels, well below the cusp
a 2k 1\ 7 % 1
W= Wg Y 2+(n1+§)hv1—]—(n2—l—g)hv2

with
]/ k3 A2
’V;_k=’Vl 1_4:—6% .

For an electronic transition, terminating on the lower potential surface, the
first members of the vibrational progression in »; should therefore be separated by
¥, In the table v¥/|y, is tabulated as a function of 4.

The complete energy pattern in say the vibrational coordinate ¢, can be
obtained as follows. The electronic wavefunctions are taken as
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N V_ (€F + deh) o wf == (e + ieh) B

1 . ;
a)zzx:—ﬁ(eg——%g)“ wzﬁ:—ﬁ’(e;'—w{;)ﬁ'

The coupled differential equations which give the solutions to the vibrational
functions y, (¢;) and ¥, (g,) associated with the interacting potential surfaces are
then

(Hvin+ 3D p+adige=Wn
Gt (Hvn— A =Wy,
Expanding y, = Z On P and y, = Z bn wn where vy, is a solution to the har-

monic equation %”vm Yn = Wayn Wl’ch Wp=(n+3%) by, we get two infinite
determinants, which can be written in compact form

shy, i%—W Ay1 0 0
AV I AW Ay 0
0 AV2 %lwl_t—’;——W AV3 =0.
0 0 AV3 %hﬁ?%——W .

In the diagonal terms the signs of A must be taken both as + — 4 ... and
L 1/ d
+ ...andﬁal/Q_k.l_hvl.

The solutions can of course only be obtained by numerical methods, and in
order to see the general pattern of vibrational levels, we have solved 10 x 10

| 7
A= sogem”?
A = 1000 em™
hy= 300 cm™!

3

| I I | L
A= s0em”
A= 700 cm”
hy= 300 cm™
L | | {L i

14 s00 7000 7500 2000
Fig. 3. Vibrational pattern in an electronic transition 24 — 2E with varying amount of LS coupling

27*
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determinants with A = 500 cm~!, Ay; =300 cm-! and A= 100cm-! and
1000 em~—1. This value of A corresponds to a Jahn-Teller stabilization energy Wgiap
equal to respectively some 784 cm—! and 408 cm—. The results are given in Fig. 3,
where we have pictured the appearance of the vibrational pattern of a Jahn-Teller
active vibration in a 24— 2K transition. The pictured vibrational pattern is that
expected at 0 °K with no hot bands present. In that case the line intensity is
given proportional to a3, where a, is the first coefficient in the expansion of .
Using the Franck-Condon principle it is not difficult to understand that a large
spin-orbit coupling will lead to two well separated potential surfaces and therefore
to two intensity maxima. It is, however, important to realize that the convergence
of our numerical calculation is rather slow, and therefore it is only the general
shape of the vibrational patterns, not the finer details, that is significant.

Conelusions

A square planar molecule which in its ground state is expected to have a
doubly degenerate electronic state will evidently undergo a stabilization by means
of a nuclear distortion, thereby assuming a D,y symmetry. On the other hand, in a
doubly degenerate excited state, the Jahn-Teller effect will manifest itself dyna-
mically : that is the vibrational pattern will reflect the vibronic coupling. With no
spin-orbit coupling present we will observe a regular progression in single quanta
of the Jahn-Teller active vibration. In that case the appearance of such a progres-
sion is a certain sign of a Jahn-Teller effect. This is of course exactly what we
should expect, since this vibration has taken the role of a totally symmetric vibra-
tion in the distorted molecule. However, if there is spin-orbit coupling present the
vibrational pattern will show irregularities. For a small spin-orbit coupling the
lines in the progression will appear double. Then with increasing spin-orbit coup-
ling the line spacing and intensity will be completely redistributed until finally,
when the spin-orbit coupling has wiped out the Jahn-Teller effect, the intensity will
be concentrated in two 0 — 0 lines associated with the two separated potential
surfaces.

Finally we notice that in the special case ¢, = 4 = 0, we will have no “inver-
sion” doubling of the vibrational levels. The reason is quite straight{orward; there
is no torque which will take the molecule from one of the distorted configurations
to its “mirror” image. Once the molecule has “‘chosen’ which half of the potential
surface it wants to be in, it will have to stay there.
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